ELMAN-RECURRENT NEURAL NETWORK FOR LOAD SHEDDING OPTIMIZATION
نویسندگان
چکیده
منابع مشابه
Forecasting Using Elman Recurrent Neural Network
Forecasting is an important data analysis technique that aims to study historical data in order to explore and predict its future values. In fact, to forecast, different methods have been tested and applied from regression to neural network models. In this research, we proposed Elman Recurrent Neural Network (ERNN) to forecast the Mackey-Glass time series elements. Experimental results show tha...
متن کاملA Fuzzy Elman Neural Network
A fuzzy Elman neural network (FENN) is proposed to identify and simulate nonlinear dynamic systems. Each of all the fuzzy rules used in FENN has a linear state-space equation as its consequence and the network, by use of firing strengths of input variables, combines these Takagi-Sugeno type rules to represent the modeled nonlinear system. The context nodes in FENN are used to perform temporal r...
متن کاملTraffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization
Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...
متن کاملAn efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کاملNeuro - Fuzzy Elman Network for Short - Term Electric Load Forecasting
The problem of short-term electric load forecasting (STLF) is considered. A modified architecture of Elman-type recurrent neural network is proposed. It utilizes a special fuzzification layer to deal with quantitative as well as ordinal and nominal data. The second hidden layer of the network consists of standard Rosenblatt-type neurons with sigmoidal activation functions. The context layer is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SINERGI
سال: 2020
ISSN: 2460-1217,1410-2331
DOI: 10.22441/sinergi.2020.1.005